Regulation of burst activity through presynaptic and postsynaptic GABA(B) receptors in mouse superior colliculus.

نویسندگان

  • Katsuyuki Kaneda
  • Penphimon Phongphanphanee
  • Tomoko Katoh
  • Kaoru Isa
  • Yuchio Yanagawa
  • Kunihiko Obata
  • Tadashi Isa
چکیده

In slice preparations, electrical stimulation of the superficial gray layer (SGS) of the superior colliculus (SC) induces EPSC bursts in neurons in the intermediate gray layer (SGI) when GABA(A) receptor (GABA(A)R)-mediated inhibition is reduced. This preparation has been used as a model system to study signal processing involved in execution of short-latency orienting responses to visual stimuli such as saccadic eye movements. In the present study, we investigated the role of GABA(B) receptors (GABA(B)Rs) in modulating signal transmission in the above pathway with whole-cell patch-clamp recordings in SC slices obtained from GAD67-GFP knock-in mice. Perfusion of the slice with the GABA(B)R antagonist CGP52432 (CGP) greatly prolonged the duration of the EPSC bursts. Local application of CGP to the SGS but not to the SGI produced similar effects. Because SGS stimulation elicited bursts in GABAergic neurons in the SGS when GABA(A)Rs were blocked, these results suggest that GABA released after bursts activates GABA(B)Rs in the SGS, leading to reduced burst duration. We found both postsynaptic and presynaptic actions of GABA(B)Rs in the SGS; activation of postsynaptic GABA(B)Rs induced outward currents in narrow-field vertical cells, whereas it caused shunting inhibition in distal dendrites in wide-field vertical cells. On the other hand, activation of presynaptic GABA(B)Rs suppressed excitatory synaptic transmissions to non-GABAergic neurons in the SGS. These results indicate that synaptically released GABA can activate both presynaptic and postsynaptic GABA(B)Rs in the SGS and limit the duration of burst responses in the SC local circuit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nicotinic acetylcholine receptor subtypes involved in facilitation of GABAergic inhibition in mouse superficial superior colliculus.

The superficial superior colliculus (sSC) is a key station in the sensory processing related to visual salience. The sSC receives cholinergic projections from the parabigeminal nucleus, and previous studies have revealed the presence of several different nicotinic acetylcholine receptor (nAChR) subunits in the sSC. In this study, to clarify the role of the cholinergic inputs to the sSC, we exam...

متن کامل

Presynaptic GABA(B) receptors on glutamatergic terminals of CA1 pyramidal cells decrease in efficacy after partial hippocampal kindling.

We tested the hypothesis that presynaptic GABA(B) receptors on glutamatergic terminals (GABA(B) heterosynaptic receptors) decreased in efficacy after partial hippocampal kindling. Rats were implanted with chronically indwelling electrodes and 15 hippocampal afterdischarges were evoked by high-frequency electrical stimulation of hippocampal CA1. Control rats were implanted with electrodes but no...

متن کامل

GABA(A) and GABA(C) receptors have contrasting effects on excitability in superior colliculus.

We have recently found that GABA(C) receptor subunit transcripts are expressed in the superficial layers of rat superior colliculus (SC). In the present study we used immunocytochemistry to demonstrate the presence of GABA(C) receptors in rat SC at protein level. We also investigated in acute rat brain slices the effect of GABA(A) and GABA(C) receptor agonists and antagonists on stimulus-evoked...

متن کامل

Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system.

Aging and acoustic trauma may result in partial peripheral deafferentation in the central auditory pathway of the mammalian brain. In accord with homeostatic plasticity, loss of sensory input results in a change in pre- and postsynaptic GABAergic and glycinergic inhibitory neurotransmission. As seen in development, age-related changes may be activity dependent. Age-related presynaptic changes i...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 4  شماره 

صفحات  -

تاریخ انتشار 2008